

History of C Programming Language

 C is a programming language which born at “AT & T’s Bell Laboratory” of USA in 1972.

 C was written by Dennis Ritchie, that’s why he is also called as father of c programming

language.

 C language was created for a specific purpose i.e. designing the UNIX operating system (which

is currently base of many UNIX based OS).

 From the beginning, C was intended to be useful to allow busy programmers to get things done

because C is such a powerful, dominant and supple language

 Its use quickly spread beyond Bell Labs in the late 70’s because of its long list of strong features.

Why Name “C” was given to Language?

 Many of C’s principles and ideas were derived from the earlier language B. (Ken Thompson

was the developer of B Language.)

 BCPL and CPL are the earlier ancestors of B Language

 CPL is common Programming Language. In 1967, BCPL Language (Basic CPL) was created

as a scaled down version of CPL

 As many of the features were derived from “B” Language that’s why it was named as “C”.

After 7-8 years C++ came into existence which was first example of object oriented

programming.

 Summary of C Programming Language History

Summary –

1 B Language Developed By Ken Thompson.

2 Operating System Developed in C- UNIX Operating System.

3 Developed at AT & T Bell Laboratory.

4 Creator of Traditional C -Dennis Ritchie

5 Year- 1972

 C Programming Language Timeline:

Programming Language Development Year Developed by

ALGOL 1960 International Group

BCPL 1967 Martin Richards

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K&R C 1978 Brain Kernighan and Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

 The UNIX operating system, the C compiler, and essentially all UNIX application programs

have been written in C. C has now become a widely used professional language for various

reasons –

 Easy to learn.

 Structured language.

 It produces efficient programs.

 It can handle low-level activities.

 It can be compiled on a variety of computer platforms.

Why use C?

C was initially used for system development work, particularly the programs that make-up the operating

system. C was adopted as a system development language because it produces code that runs nearly as

fast as the code written in assembly language. Some examples of the use of C might be –

 Operating Systems

 Language Compilers

 Assemblers

 Text Editors

 Print Spoolers

 Network Drivers

 Modern Programs

 Databases

 Language Interpreters

 Utilities

High level languages vs Low level languages

 Meaning:

 With the help of high level language one can write applications that are portable across

various platforms and is independent of any architecture.
But Low Level languages, these languages are very close to machine

language, they are also known as assembly language.

 Benefits:

 High level languages are easier to understand and is user-friendly.
But Low Level languages are more appropriate for developing new

operating systems or writing firmware codes for micro-controllers.

 Speed:

 High level languages has lots of abstractions and layers of code before they reach the

hardware itself.
But Low level, machine code is nearer to the hardware, which is

actually fast to process and return the output.

 Portability:

 High level languages are extremely portable, they are mostly used to write software’s which

can run on multiple platforms and architectures.
But Low Level languages codes are very hard to understand, and code

written in assembly language is impossible to run on other machine or

architecture.

 Which is better:

 High level is where all the creative things take place and it can be debugged in very easier

manner than a low-level.

But low level is challenging and requires a great deal of experience and knowledge.

What is High Level Languages?

You must be thing what is High level language? But tell me you they are an easier to understand and is

user-friendly. With the help of these languages one can write applications that are portable across

various platforms (such as Linux or windows) and is independent of any architecture (such as non-intel

ARM or the infamous Intel). High level language Example, writing a program in python which by

default works in any Linux system, then just compiling it into any exe using py2exe and then running

it on windows.

 Similar examples are Python, C, FORTRAN or Pascal. Such languages are considered as high-

level language because they are closer to human languages and much further from machine languages.

When I say human language, I don’t mean what we talk in our day-to-day life. It means the code is

something we can understand by knowing some basics in programming. The code written is almost

readable by humans, something that can be read and pronounced. But however, since we are talking

about computers, for a computer this is hard to understand. So in order to make this sensible to

computers and run a program created with a high-level language, it must be compiled into machine

language.

And this is where Low-level language comes in between. Unlike previously, where there were only a

few high-level languages, today there are n number of high-level languages such as C, COBOL,

FORTRAN, Pascal, Java, Perl, Python, PHP, Ruby, C++, BASIC and Visual Basic.

What are Low-level languages?

Low-level languages those languages which are extremely close to machine language. They are also

known as Assembly languages. The closest languages after Assembly to Machine language are C and

C++. Some people even call C and C++ as low level languages. Machine code is known as low level

because unlike high level programming languages it doesn’t need anything else like compilers or

something. It runs directly on the processor and they are extremely architecture specific.

 Low-level languages are more appropriate for developing new operating systems or writing

firmware codes for micro-controllers. They can do anything with a little bit of hard work (actually a

lot of hard work to be specific), but obviously you won’t want to write some major application in it.

Similar is the case with C (Actually called as Cee). C is actually a very vast language to start with. It

allows you to register directly and give instant access to various memory locations.

 But at the same time it also has a lots of constructs that allow the hardware to load

abstraction. Frankly speaking, C and C++ dually represent variety of languages, since most languages

have taken its libraries from them. In practice, both C and C++ are low-level as I told you previously

because writing applications on enterprise level is quite difficult. But theoretically, both of them are

actually high-level languages.

C Programming – The Low-level/High-level Confusion

Though C has lots of characteristics similar to that of Pascal Language, sometimes it is still considered

as a low level language, reason being it supports operations of bits, pointers and direct access to

memory. C actually is a high level language with the inclusive features of low level. This is the main

reason why programmers depend on C-over anything for its unbeatable qualities. It may seem weird

that C though treated as a low level language, is extremely portable. Fanatically speaking, C is actually

extended to use hardware at its extreme limits as possible.

Assembly language, on the other hand is hardly portable. Though, trying to achieve portability is a big

deal in case of low-level especially in the case of Java, which runs on a JVM i.e. a virtual machine. C

or Assembly running in a VM will never have pure access to the hardware. To be more precise, a

language becomes a low level if it is specifically structured to run directly on the hardware. Low level

languages have very less syntax, unlike High level languages which have loads of codes. Languages

that are low level which allow full access of the hardware would actually be a poor choice to write

projects.

CONCEPT OF HARDWARE AND SOFTWARE

Hardware: The physical component of a computer is called as hardware. The hardware may be an

electronic, electrical, magnetic or mechanical components.

Ex: RAM, Floppy Disk, Hard Disk, Key Board, Printer etc.

Software: Software is the set of computer programs which is used for some particular purpose. This

may be some web applications like WhatsApp, Twitter, Flipkart or desktop applications like- MS Word,

Ms excel etc.

Role of software in computers-

As we know that set of instructions is called as program, and collection of programs are called as

software. Instead of doing some work manually, a software can perform all those work automatically

only we need to program that software according to our need.

The each instruction in the program direct the computer to perform input operations, process the input

data and display the result.

Types of Software

Basically there are two types of software-

1) System Software

2) Application software

Software

System Software Application Software

Operating

System

Programming

Software

Utility

Software

User-Written

Software

Ready-Made

Software

System Software: The System Software is basically used by the computer system to control all the

actions and operations of the system. These system software are also called as the system packages.

System software is a type of computer program that is designed to run a computer's hardware and

application programs. If we think of the computer system as a layered model, the system software is the

interface between the hardware and user applications.

Functions of system software-

a) Running of other software

b) Communications with attached or peripheral devices like- printers, scanners, card readers, CPU etc.

c) Development of other type of software.

Ex: Operating System, Compiler, Assembler, Loader, Linker etc.

Operating System

An operating system (OS) is system software that manages computer hardware and software resources

and provides common services for computer programs.

Functions of operating System-

1) Job Management: The operating system responds to the command or instructions which are given

by the user and load the desired application program from secondary storage to main memory (RAM)

for their execution.

2) Task Management: Basically in single tasking computer system, the operating system doesn’t need

to have the task management. But in multi-tasking computer the operating system executes one or more

than one program simultaneously at a time. To execute more than one program simultaneously the

operating system needs to schedule the task so that every program gets the chance to execute.

3) Data Management: Data management is the biggest responsibility of operating system. Operating

system keeps the track of entire data on disk. Actually the application or programs doesn’t know where

exactly the data is placed. So the operating system avails the data for the applications when needed.

4) Security: The computer system which is operated by more than one user needs to be separated from

each other. So the operating system maintains the list of users and provides the password protection for

each user. Only the valid user can get access to the computer system. It also provides the backup and

recovery support to the user in case of forgot the password.

5) Bootstrap program: Boot means start or make the computer system ready to work. The word “boot”

comes from “bootstrap”. Since bootstrapping helps the computer to run the instruction written in ROM

to execute and copy the operating system files from secondary to primary memory (RAM). After

finishing the booting, our computer system is ready to function.

Programming Software:

 Programming software is basically given for development of software or computer program. This

computer programs can be written in different languages like- C, C++, Java, .Net etc. This software are

used for different purpose or different work. Ex-Flipkart, WhatsApp, MS Word, MS Excel etc.

Examples of programming software are- Assembler, Compiler, interpreter etc.

Some Basic tools which are used in programming software

1) Assembler: Assembler is a programming software or tool that translates assembly language

programs into machine language program. Because our machine directly doesn’t understands

the assembly language so assembler converts this assembly language code to binary format so

that our machine can understands it easily. Assembler takes assembly language as an input and

it produces object code/machine code as output.

2) Compiler: A Compiler is a program that converts high level language program to machine

language program. Actually a compiler is much more intelligent than assembler because

compiler checks all kind of limits, range and errors and syntax mistake. Compiler take more

execution time for a program than assembler. If a compiler runs on the same computer for which

it produces the object code then it is called as self/resident compiler. But if the compiler runs

on different computer and generates the object code for other computer then it is called as cross

compiler.

3) Interpreters: An interpreters is a program which translates the high level languages program

to machine code one by one or statement by statements. It is basically used for debugging

purpose to trace the errors and bugs in the program.

a) Interpreter is slower than compiler because it executes line by line but compiler executes

entire program at a time.

 b) Interpreter is a smaller program as compared to compiler.

 c) Interpreter occupies less memory in comparison to compiler.

 4) Linker: In computing, a linker or link editor is a computer program that takes one or more

object files generated by a compiler and combines them into a single executable file, library

file, or another object file.

Utility Software

Utility software is system software designed to help analyse, configure, optimize or maintain a

computer.

Ex: antivirus is a best example for utility software.

Application Software

An Application software is a program or set of programs that is designed for end-user. Each and every

applications software is designed to perform certain work.

Ex: Facebook- is a web application which is designed for chatting, Flipkart-For Shopping, WhatsApp

for messaging etc.

Application software can be classified into two category:

1) Readymade Software: These are the software which are developed not for specific user but it

can be used by any user.

 Ex: Tally, Ms Word.

2) User-Written Software: These are the software which are developed by end user for specific

need. It may be the websites or some applications. WhatsApp is user written software which is

basically for messaging purpose. The requirement varies user to user so the development is also

differ.

COMPUTER LANGUAGE

Languages plays a vital role in communications. Means when two or more device is in communication

they should must understand one another. For this communication purpose computer follows some

languages. This languages should be understand by both user and computer systems.

The Computer languages are broadly classified as-

1) Machine Language

2) Assembly Language

3) High Level Language

1) MACHINE LANGUAGE:

Binary notation (means 0 & 1) is directly understand by the computer. We don’t need to

convert/translate it. This binary notation is called is called machine code or Machine language program.

The programmer directly write the program using binary number (0, 1), which quite tough and need

years of experience to do so. There are specific binary code for each instruction. So remembering this

code is not that easy.

 Advantage of Machine Language

1) The programs written in machine language can be executed very fast by the computer.

2) This program executed very fast because they don’t need to translate, it can be directly understand

by the computer system.

Dis-advantage of Machine Language

1) Machine Dependent: Machine dependency means the code written on one system can’t be run

on other system.

Ex: Intel processor have different instruction set while AMD processor has different instruction set.

2) Difficult to Program: As we know that the machine language is directly understand by the

system, but writing this program is quite tough. Because the programmer needs to remember each

and every instruction code to program which needs a years of experiences.

3) Error prone: Writing this code is bit complex and hence there is more chance of error. While

programming we need to write the equivalent instruction code which is quite confusing. And also

we need to remember the storage location of each and every instruction or data as well as the opcode.

 4) Difficult to modify: Once the program has been written is very complex to modify.

ASSEMBLY LANGUAGE:

It is the programming language which is used to write the program to give the instruction to computer

system to perform some activity. Previously in machine level language we are directly writing the

instruction in numerical format but here in assembly language we are writing instruction in word.

 Here instruction is written in word format is converted to numerical instruction by the

help of assembler. An assembler is a program which converts assembly language instruction to machine

level (binary) instruction.

Advantage of assembly Language

1) Assembly language program takes less execution time as well as memory as compared to high level

language programs.

2) It needs less processing power of a CPU and thus runs faster than the high level programming

language.

Dis-advantage of Assembly language program

1) Programming is difficult and debugging is time consuming.

2) It is slower than the machine level programming language because it needs on translator to convert

assembly code to machine code.

3) The program written on one computer can’t be run on an-other computer system having the different

set of hardware.

4) In order to write the assembly language program the programmer must have the detailed knowledge

of hardware of that system on which they are working including knowledge of registers, instruction

sets, and connection of ports to the peripherals etc.

HIGH LEVEL LANGUAGE

This is language which is easy for the user, so it is called as user friendly language. It is the language

which can be written in English. To overcome the problems of assembly level language, high level

language we introduced.

 It is basically a problem based rather than the computer based. The every instruction written in

high level language is called as a statements. This statement can be a combination of English alphabets

and mathematics.

Ex: FORTRAN, BASIC, PASCAL, C, C++, Java, Ruby, Python etc.

 This high level language is user friendly but not machine friendly, so it is not directly

understand by the machine. To make it understandable to the machine it needs to be

translate. So compiler is used to convert this high level language to machine level language.

FIRST PROGRAM IN C PROGRAMMING LANGUAGE

/* First Demo Program in C Programming */ Comment

#define PI 3.14; Macro Declaration

#include <stdio.h> Pre-processor directives (#) + Standard Input output

#include <conio.h> Entry point to program

void main ()

{ To clear the screen

 clrscr ();

 printf (“Hello World!!!”); Printing Hello World on Console

}

To compile: alt+f9

To Run: ctrl+f9 Source Code

Output: Hello World!!!

How exactly the code gets executed

Compiler is not a single module, but it is having a multiple modules. We can divide them into 4 modules

which are given as follows-

 Source Code (first.c /.cpp)

 Intermediate Code

Pre-Processor

Compiler

Assembler

Linker

Assembly Code

Object Code/Machine code
Libraries

.exe file (Final

Executable code)

Pre-processor: is the first pass of any C compilation. It processes include-files, conditional compilation

instructions and macros. It basically takes the source code as input and it generates some intermediate

code.

 Pre-processor ignores the comment.

 It will include the header file in our code instead of #include<stdio.h> & #include<conio.h>.

 It will replace all macro name with their original code/value if we are using any macro in our

program.

Compiler: is the second pass. It takes the output of the pre-processor, and the source code, and

generates assembly source code. This assembly code is input to the assembler.

 Compiler generates the assembly code in the form of mnemonics.

 It is basically a English equivalent code or words.

Assembler: is the third stage of compilation. It takes the assembly source code and produces an

assembly listing with offsets. The assembler output is stored in an object file.

 Assembler converts the assembly code to pure binary code which is an object code/machine

code.

Linker: is the final stage of compilation. It takes one or more object files or libraries as input and

combines them to produce a single (usually executable) file. In doing so, it resolves references to

external symbols, assigns final addresses to procedures/functions and variables, and revises code and

data to reflect new addresses (a process called relocation).

 Suppose multiple programmers working on different modules of a project. In that case if we

compile the entire code then we will get many object code. The linker will link all these object

code together and gives the single executable code (.exe file).

 Suppose we are using some built-in function from library in our program, in that case the linker

will link our code with that library function code.

 Basically there are two types of linking

1) Static linking

2) Dynamic linking

1) Static linking:

o Static linking is the process of copying all library modules used in the program into

the final executable image. This is performed by the linker and it is done as the last

step of the compilation process. The linker combines library routines with the

program code in order to resolve external references, and to generate an executable

image suitable for loading into memory. When the program is loaded, the operating

system places into memory a single file that contains the executable code and data.

This statically linked file includes both the calling program and the called program.

o Static linking is performed by programs called linkers as the last step in compiling

a program. Linkers are also called link editors.

o Statically linked files are significantly larger in size because external programs are

built into the executable files.

o In static linking if any of the external programs has changed then they have to be

recompiled and re-linked again else the changes won't reflect in existing executable

file.

o Statically linked program takes constant load time every time it is loaded into the

memory for execution.

o Programs that use statically-linked libraries are usually faster than those that use

shared libraries.

o In statically-linked programs, all code is contained in a single executable module.

Therefore, they never run into compatibility issues.

2) Dynamic Linking:

o In dynamic linking the names of the external libraries (shared libraries) are placed

in the final executable file while the actual linking takes place at run time when

both executable file and libraries are placed in the memory. Dynamic linking lets

several programs use a single copy of an executable module.

o Dynamic linking is performed at run time by the operating system.

o In dynamic linking only one copy of shared library is kept in memory. This

significantly reduces the size of executable programs, thereby saving memory and

disk space.

o In dynamic linking this is not the case and individual shared modules can be

updated and recompiled. This is one of the greatest advantages dynamic linking

offers.

o In dynamic linking load time might be reduced if the shared library code is already

present in memory.

o Programs that use shared libraries are usually slower than those that use statically-

linked libraries.

o Dynamically linked programs are dependent on having a compatible library. If a

library is changed (for example, a new compiler release may change a library),

applications might have to be reworked to be made compatible with the new

version of the library. If a library is removed from the system, programs using that

library will no longer work.

Data Types
============

Data Types

Primitive Data

Type
Enumerated Data

Type

Derived Data

Type
Void Data Type

Floating Point

Type
Integer Types  Arrays

 Functions

 Pointers

 Structures

 Unions

Float, double,

long double

Char, short, int,

long

Type Storage

size

Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

Floating Point Data

e Storage

size

Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to
1.7E+308

15 decimal places

long
double

10 byte 3.4E-4932 to
1.1E+4932

19 decimal places

#include <stdio.h>

#define PI 3.1415

#define circleArea(r) (PI*r*r)

int main()

{

 int radius;

 float area;

 printf("Enter the radius: ");

 scanf("%d", &radius);

 area = circleArea(radius);

 printf("Area = %.2f", area);

 return 0;

}

ASCII TABLE AND DESCRIPTION

ASCII stands for American Standard Code for Information Interchange. Computers can only understand

numbers, so an ASCII code is the numerical representation of a character such as 'a' or '@' or an action

of some sort. ASCII was developed a long time ago and now the non-printing characters are rarely used

for their original purpose. Below is the ASCII character table and this includes descriptions of the first

32 non-printing characters. ASCII was actually designed for use with teletypes and so the descriptions

are somewhat obscure. If someone says they want your CV however in ASCII format, all this means is

they want 'plain' text with no formatting such as tabs, bold or underscoring - the raw format that any

computer can understand. This is usually so they can easily import the file into their own applications

without issues. Notepad.exe creates ASCII text, or in MS Word you can save a file as 'text only'.

C CHARACTER SET

Whenever we write any C program then it consists of different statements. Each C Program is set

of statements and each statement is set of different c programming lexims. In C Programming each
and every character is considered as single lexim. i.e. [Basic Lexical Element].

Character Set Consists Of -

Types Character Set

Lowercase Letters a-z

Uppercase Letters A to Z

Digits 0-9

Special Characters !@#$%^&*

White Spaces Tab Or New line Or Space

Valid C Characters: Special Characters are listed below –

Symbol Meaning

 ~

 Tilde

 !

Exclamation mark

 #

Number sign

 $

Dollar sign

%

Percent sign

 ^

Caret

 &

Ampersand

 *

Asterisk

(

Left parenthesis

)

Right parenthesis

_

Underscore

 +

Plus sign

 |

 Vertical bar

 \

 Backslash

 ` Apostrophe

 –

 Minus sign

 =

 Equal to sign

 {

 Left brace

 }

 Right brace

 [

 Left bracket

]

 Right bracket

 : Colon

 ”

 Quotation mark

 ;

 Semicolon

 <

 Opening angle bracket

 >

 Closing angle bracket

 ?

 Question mark

 ,

 Comma

 .

Period

 /

 Slash

Special Backslash Character Constants in C:

Constant Meaning

‘a’ Audible Alert (Bell)

‘b’ Back Space

‘f’ Form Feed

‘n’ New Line

‘r’ Carriage Return

‘t’ Horizontal Tab

‘v’ Vertical Tab

”’ Single Quote

‘”‘ Double Quote

‘?’ Question Mark

‘\’ Backslash

‘\0’ Null

How many Spaces Makes One Tab Space:

1. Generally 8 Spaces makes one Tab in Borland C, C++ 3.0 Compiler

2. It differs from Compiler to Compiler And also different for different Word Processors

Backslash Characters: Properties

You need to learn what is Backslash Character in C Programming.

1. Although it consists of two characters, it represents single character.

2. Each escape sequence has unique ASCII value.

3. Each and Every combination starts with back slash()

https://app.box.com/shared/vk78jq5ln2
http://www.c4learn.com/c-programming/c-escape-sequence/

4. They are non-printable characters.

5. It can also be expressed in terms of octal digits or hexadecimal sequence.

6. Escape sequence in character constants and string literals are replaced by their equivalent

and then adjacent string literals are concatenated
7. Escape Sequences are pre-processed by Pre-processor.

1. Tab: ‘\t’ Character

 It is Horizontal Tab
 Takes Control 8 spaces ahead in Borland CC++ 3.0 Compiler

#include<stdio.h>

int main()

{

printf("Hello\t");

return(0);

}

Cursor Position After Execution of Printf :

Hello _

2. New Line Character: ‘\n’ Character

 It is New Line Character

 Takes Control to new Line

#include<stdio.h>

int main()

{

printf("Hello\n");

return(0);

}

Cursor Position After Printf :

Hello

_

3. Backslash: ‘\b’ Character

 It is Backslash Character

 Takes Control one position back

#include<stdio.h>

int main()

{

printf("Hello\b");

return(0);

}

Cursor Position:

Hell_

Note: on ‘o’ character from Word Hello

4. Carriage Return: ‘\r’ Character

 It is Carriage Return Character

 Takes Control to First Position in the Line

printf("Hello\r");

Cursor Position:

Note : Cursor on ‘H’ character from Word Hello

_allo

4. Audible Return: ‘\a’ Character

 It is audible Return Character

 Beeps Sound

printf ("Hello\a");

What will happen?

Hello

After hello System Sound Beep will be started.

